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FOREWORD 

T?l:s cixuinent is one of sixteen sections that comprise the final 
report prepared by the Minneapolis-Honeywell Regulator Company for the 
National Aeronautics and Space Administration under contract NASw-563. 
The report is issued in the following sixteen sections to facilitate 
updating as progress warrants: 

summary 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of Finite Response Time Control 

A Sufficient Condition in Optimal Control 

Time Optimal Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Programming and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

State Determination for a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the Quadratic Penalty Fbnction Criterion 
to the Determination of a Unear Control for a Flexible Vehicle 

MLiiirmun Disturbance Effects Control of Unear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretation of the Drift-Minimum 
Principle 

A Minimax Control for a Plant SubJected to a Known had Disturbance 

Section 1 (1541-TR 1) provides the motivation for the study efforts 
The arid objectively discusses the significance of the results obtained. 

results of inconclusive and/or unsuccessful investigations are presented. 
Linear programming is reviewed in detail adequate for sections 6, 8, and 16. 

It is shown in section 2 that the prely formal procedure for synthe- 
s i zi r i g  an optimum bang-bang controller for a plant whose representation 
coIltains derivatives of the control variable yields a correct result. 
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In section 3 it is shoin t3at t h e  problen of controlli1:g m cospxnts 
(1 c m < n), of the state vector for an n-t:? order lizeai- <on,tailt cDei'l'icient 
plant, t o  zero in finite tiEe can be refomdated as a yro5iem of controllinG 
a single component. 

Section 4 shows Pontriagirfs Maximm Principle is often a sufficient 
condition for ?tima1 control of linear plants. 

Section 5 develops an algorithm for compating the time optimal control 
functions for plants represented by linear recurrence eqGations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality Fhase constraints 
can be transformed into similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optimal bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maxim principle is proven for time-optimal control 
with bounded phase Constraints. An existence theorem is proven. The 
problem solution is reduced to linear programming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimal control with amplitude and rate limited control variables is 
presented in section 9. 

Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I2  presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty function criterion is applied in section 13 to 
develop a linear control l a w  for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minim load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

In section 16 linear prograzning is used to detei?ni.ne a control fuiiction 
that minimizes the effects of a known load distirbance. 
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AN ALTERNATE DERIVATION AND INTERPRETATION 

OF THE DRIFT-MINIMUM PRINCIPLE* * By C .  A .  Harvey 

ABSTRACT / 5 - 5  Li 5 
The design of a control  system f o r  a p lan t  wi th  disturbance 

inputs  i s  considered. The motion o f  the  plant  i s  assumed t o  be 

described by n l i n e a r ,  f i r s t -o rde r ,  constant-coeff ic ient  d i f f e r e n t i a l  

equations forced with a sca la r  control  var iab le  and a s c a l a r  

dis turbance.  A l i n e a r ,  fixed-gain con t ro l l e r  i s  assumed. I n  some 

cases i t  is  possible  t o  choose t h e  gains i n  such a manner tha t  a 

c e r t a i n  type of  invariance t o  disturbances is obtained f o r  the  

r e su l t i ng  control led ayatem. Conditions f o r  obtaining such in- 

variance a re  derived using t h e  concept of complete c o n t r o l l a b i l i t y .  

The Drift-Minimum condition is obtained a s  a spec i f i c  example. 

INTRODUCTION 

The system considered can be wr i t ten  i n  the form of the vector  

d i f f e r e n t i a l  equation 

= Ax + bu(x,g) + eg (1) 

where x i s  an n-vector representing t h e  s ta te  of t h e  system, dot  

represents  d i f f e ren t i a t ion  with respect  t o  the  independent var iable  

t ,  A i s  a constant nxn matrix, b and e a r e  constant n-vectors, 

u(x,g)  i s  a s c a l a r  feedback control ,  and g is a s c a l a r  disturbance 

considered t o  be a funct ion of t only.  The con t ro l l e r ,  u(x,g)  i s  

...................... 
* Prepared under contract  NAStr-%3 for the  NAGA. 

Senior Research S c i e n t i s t ,  Minneapolis-Honeywell R e g .  Co., 
Minneapolis, Minnesota 

* 
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assumed t o  be given by 

n 

i=l 
u(x,g)  = c k i X i  + kn+l" 

f o r  some set of n+l constants,  ki, i = 1,2,.. . ,n+l . 
k the  vector  with components ki, i = 1,2,...,n+l, it i s  possible  t o  

s u b s t i t u t e  for u(x,g)  i n  (1) the right-hand s i d e  of (2 )  t o  obtain 

Denoting by 

2 = A(k)x  + e(k)g  ( 3 )  

where the  ijth element of A(k)  i s  a 

of e ( k )  i s  ei t bikn+l. 

+ b k and the ith element 13  i j  

For ce r t a in  choices of the vector  k, there  may be some l i n e a r  

combination of the components of x tha t  i s  completely in sens i t i ve  

t o  the  disturbance. Such cont ro l le rs  a re  cal led invar ian t  

con t ro l l e r s  (reference 3). The concept of complete c o n t r o l l a b i l i t y  

( reference 2 )  i s  re la ted  t o  the s e n s i t i v i t y  of a system t o  a control  

var iable .  It i s  shovm i n  the following paragraph t h a t  invariance 

t o  t h e  disturbance is  obtained i f  and only if the system (3) i s  not 

completely control lable  when g i s  considered a s  the control  var iab le  . 
A s  an e x p l i c i t  example t h e  Drift-Minimum condition (reference 1) 

i s  derived as a type o f  invariance condition. That i s ,  the D r i f t -  

Minimum condition insures  a ce r t a in  i n s e n s i t i v i t y  t o  dis turbances.  

COMPLETE CO"JXOLLABILI!l'Y AND INVARIANCE 

For equation (3) the concept of complete c o n t r o l l a b i l i t y  can 

be considered w i t h  respect t o  the disturbance g ( t )  if g ( t )  i e  thought 

of a s  a control .  The condition for the  system represented by (3)  

t o  be completely control lable  w i t h  respect  t o  g ( t )  i s  t h a t  the matrix 

wi th  columns e (k)  , A (  k)e  (k) , . . . , [ A (  k)  In-'e ( k )  be non-singular , i .e. 
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de t l e (k ) ,  A(k)e(k),  ...,[ A(k)]"-' e ( k ) l  { 0. (4 )  

? 

0 

I f  (3)  i s  completely control lable  w i t h  respect  t o  g ( t )  then, for 

a r b i t r a r y  n-vectors x 

there e x i s t s  a g ( t )  depending on xo,x ,to, and tl defined on [to,tl] 

such t h a t  t he  response corresponding t o  g ( t )  and the  i n i t i a l  

condi t ion x ( to )  = xo s a t i s f i e s  x(t,) = x . 
t h a t  no l i n e a r  combination of components of  x ( t )  i s  in sens i t i ve  

( i n v a r i a n t )  t o  dlsturbances g ( t ) .  

i s  not  completely control lable  with respect  t o  g ( t ) ,  i . e . ,  ( 4 )  does 

not  hold? then some l i n e a r  combination of the  components of x ( t )  i s  

0 and x1 and arbi t rary r e a l  numbers to and tl, 
1 

1 T h i s  means, loosely,  

Conversely, i f  the  system (3) 

i n s e n s i t i v e  ( invar ian t )  t o  a l l  disturbances g ( t ) .  

The theory of invariance a l s o  deals w i t h  the  i n s e n s i t i v i t y  of 

a system t o  disturbances.  

completely invar ian t  i f  e ( k )  = 0 .  

var i an t  with respect  t:, a l l  disturbances g ( t ) .  

impossible t o  a t t a i n  since e ( k )  has n components and the only 

parameter ava i lab le  t o  the  control designer which appears i n  e (k )  

is kn+l 
combinations o f  the components o f  x ( t )  a r e  invar ian t  r e l a t i v e  t o  

g ( t ) .  It i s  c l e a r  t h a t  invariance can only be a t t a ined  when ( 4 )  

i s  v io la ted .  Thus t o  f ind invar ian t  con t ro l l e r s  i t  s u f f i c e s  t o  

The system represented by (3)  would be 

Then, c l e a r l y  the system i s  in-  

I n  general  t h i s  i s  

. Selec t ive  invariance i s  obtained when some l i n e a r  

f ind  so lu t ions  of the following equation 

d e t  I e ( k ) , A ( IC) e ( k ) , . . . , [ A  ( k ) In-', ( k ) I = 0 (5) 

I n  t h e  general  case, equation (5) involves a l l  the gains  ki, 

i = 1,2 , . . . ,n+l. Hence, i n  general, equation (5) may be sa t i s f ied  

wi th  s3me freedom or" choice of  c e r t a i n  of the  ki t o  achieve adequate 
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cont ro l  of the t o t a l  system. However, i n  prac t ice  t h i s  may not  be 

the  case. 

One important point t o  be noted i s  t h a t ,  i f  equation (5) i s  

sat isf ied,  there  i s  a l i n e a r  combination of t h e  components of x ( t )  

which i s  invariant .  T h i s  l i nea r  combination can be found, but 

determining i t s  physical meaning may be d i f f i c u l t .  

EXAMPLE 

The example t o  be considered i s  concerned w i t h  the control  of 

a r i g i d  vehicle .  The Drift-IJlinimum control  mode w i l l  be obtained 

as a se l ec t ive  invariant  cont ro l le r  f o r  a space vehic le .  The 

nota t ion  and equations of notion a re  from reference 1. Also a 

br ie f  der ivat ion of the  drift-minimum condition is  given based upon 

reference 1. 

L i s t  of Symbols 

F 

X 

N 

R 

m 

c1 

c2 
V 

V I  

0. 

Z 

Thrust force 

Axial a i r  force 

A i r  force perpendicular t o  long ax i s  of vehicle  

Control force perpendicular t o  long axis of  missile 

Mass of vehicle  

Specif ic  aerodynamic restor ing torque 

Specif ic  control  torque 

Magnitude of standard veloci ty  of vehlcle  

Wind veloci ty  magnitude 

Linear accelerat ion of center o f  g rav i ty  of vehicle  perpendicular 

t o  standard path 
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- 
7 

a 

a 

B 

@ 

c: 
W 

al 

a2 

g2 

cG 
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Velocity of center  of gravity of vehicle  perpendicular t o  

standard path 

Linear accelerat ion of center of grav i ty  of vehicle  

perpendicular t o  long axis of  vehicle  

Local l i n e a r  accelerat ion a t  a vehicle s t a t i o n  perpendicular 

t o  long ax is  of  vehicle. 

Angle of a t t ack  

Swivel motor def lec t ion  o r  vane de f l ec t ion  

Atti tude angle 

Wind angle, between flow and standard path 

Atti tude displacement gain 

Atti tude r a t e  gain 

Atti tude accelerat ion gain 

Angle of a t t a c k  gain 

Local l a t e r a l  acceleration gain 

Location of  center  of gravi ty  

Location of accelerometer 

o thers  explained a t  place of occurrence 

Superscripts 

dot Di f fe ren t ia t ion  with respect t o  t i m e  

prime Dif fe ren t ia t ion  with respect t o  angle 

The ideal ized,  linearizes equations of motion are: 

La tera l  Path Motion: 
R’ a + - @  -0 F-X N’ 

@+iT m z = -  m 
Angular Motion: 

Q = -cl a - c2 f3 
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Angular Relationship: 
- w  

V V 
, a w = -  a - a w =  $ - - l e  Z 

The control  equation has the form 
. 

B = a d + al d + bo a + g2 % 0 

I n  appl icat ions,  the two terms 
are mutually exclusive.  

I n  the case when an accelerometer i s  used t h e  control  equation 

can be modified by use of the  following r e l a t ions .  

aM = ? + (Cb1 - CG) ;o’ (10) 

0 .  N‘ R/ 7 = - a t - p  m m 

Then equation ( 9 )  can be replaced by 

To s impl i fy  notat ion l e t  y1 = N’/m, y2 = F-X/m and y3 = R’/m. 

Using equations (8) and (13), a and B nay be eliminated f r o m  

equations (6)  and (7 ) .  The r e su l t  is:  

(1 + a2c2 - g2y3jE, + + [ c l + c 2 ( a o + b o ) + g 2 ( c 2 ~ l - c l ~ ~ ) ~ ~  
(14) 

= [ C  1 2 0  +C b + g2(c2~1-c ly3) I  (i - W)/V 

+ [ (ao+b0-g2y2h3 + y1+y2 I@ 

The term (k-w)/v can be eliminated from equations (14) and (15) 



resulting in the equation 

The quasi-steady state solutions for a, g and 9 are defined as 

the solutions which result if first and higher derivatives of these 

variables are assumed to be zero. The constraint that there shall 

be no lateral acceleration ( y )  on the center of gravity of the 
vehicle for any steady state, $, has been designated as the . 
"n-f z u  
UL-LI ~-Mlni~-~~-Trincipie . Since in transient motion, where @ .. 
and @ are of finite values, a l s o  transient non-zero values for 'z' 
are to be expected, the claim for zero-drift cannot be made. From 

(16) it is clear that this condition may be written down explicitly 
as 

Now the equations of motion will be manipulated slightly and 

complete controllability with respect to aw will be Investigated. 

The case of g2 = 0, that is when no accelerometer is present, will 

be discussed first. 

discussed . 
Subsequently the case when bo = 0 will be 

. . 
Let x1 = @, x2 = 9 and x = z. When g2 = 0, equations (14) 3 

and (15) can then be written as the vector differential equation: 

0 1 0 

d 1 2 0  -c a -C2al -d/V 

d2+y2+Y3a0 Y3al -d2/v 

x1 

2 X 

x3 
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0 1 o i  
I 

! 
-C2al -d,/v 1 and d = 

Y3al - d d V  
= I d1-c2ao 

I d +y +y a ' 2 2 3 0  I 

w 

. Y ' 0  I ! 
i 

dl ! i 

i 
d2 ' 

Before proceeding w i t h  the ana lys i s  of t h i s  system, the  

equations w i l l  be wr i t ten  i n  the form discussed i n  the  introduct ion.  

Equations (6) and (7) can be wr i t ten  using (8) i n  the  form: 

x = Ax + bu + eg 

where u = f3, g = uw, all - - - a22 = a23 = 0, a12 = 1, a21 = - - a13 
a23 = - cl/v, a31 = y1 + y2' a33 = -ul/vy bl = 0, b2 = -c2, 

b3 = y3' el = 0, e2 = -cl, e3 = 71' 

( w i t h  g2 = 0 and using (8))  as 

Equation ( 9 )  can be wr i t ten  

u = klXl + k2X2 + k x + k4 g 3 3  
where kl = a. + bo, 5 = al, k3 = - bo/v and k4 = bo. 

equation (18) i s  of the  form (3) wi th  B = A ( k )  and d = e ( k ) .  

Then 

It 

should be noted i n  t h i s  case t h a t  the  four  gains kl, %, k3, kh a r e  

not independent s ince they depend on the  three  gains aos  al and bo. 

I 

Now 
- 1 

i 

2-1 a d 
d ( d  +y +y a -c --J a2 - -)+ - 

v2 : L 1  2 2 3 0  2 3 1  V 

The determinant of the matrix w i t h  columns d ,  Bd and B2d can be 

e a s i l y  computed and a f t e r  s implif icat ion may be wri t ten:  
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1 
b 

d e t ( d ,  EM, B2dl = -dT (y2 dl + y3 a, dl + c2 a, d2) (19) 

From t h i s  equation it i s  c lear  that  there  are two conditions 

under which the system f a i l s  t o  be completely cont ro l lab le  with 

respect  t o  the wind, namely: dl = 0 or 
/ 

Y2 dl + a. (Y d + c2 d2)  = 0 3 1  
It can be readi ly  ver i f ied ,  using t h e  de f in i t i ons  of %, d2,  

y2 and y3, t h a t  equation (20) i s  t h e  same a s  equation (17) if 

g2 = 0 .  That is, equation (20)  i s  the  drift-minimum condition i n  

the case when g2 = 0. 

i s  not  completely control lable ,  and hence there  is some var iab le  

When t h i s  condition i s  s a t i s f i e d  the system 

(y ) ,  a l i n e a r  combination of xl, x2, and x 

respect  t o  the  wind. T h i s  var iable ,  y,  is e x p l i c i t l y  

tha t  i s  invar ian t  w i t h  3’ 

. 
and y = 0. Thus the  drift-minimum condition i s  i n  f a c t  the zero 

y condi t ion.  

The other  condition f o r  which the system f a i l s  t o  be completely 

cont ro l lab le  is dl = 0. If t h i s  condition holds it is c l e a r  from . 
equation (18) tha t  x1 = d and x2 = d a re  invar ian t  with respect  

t o  aW. I n  t h i s  case 

c a x  - c a x  x1 = x29 x2 = - 2 0 1  2 1 2  . Y 1 C 2 - Y 3 C 1  
x3 - - c v  (-x3 + w ) .  

2 
and i f  x1 and x2 are i n i t i a l l y  zero, 

Here the  behavior of x with respect  t o  w i s  independent of the 

choice of the free gains  a, and al s ince t he i r  values only inf luence 

t h e  invariant  port ion o f  the  system. 

3 

For the case when the accelerometer is used, equations (14) 
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and (15) can be wri t ten ( w i t h  xl, x2' X3' Yl9 Y2# Y3 as defined 

J. above) as 

3. 

where y4 

and f 2  = y4[yl + a2 (c2y1 - ~ 1 ~ 3 ) ] .  Equation (22) can be wr i t ten  

as x = Cx + faw where t h e  meanings of C and f a re  c l ea r ,  

determinant of the matrix with coli-~mma fi Cfj and C2f can be 

computed. The r e s u l t  i s  

Then the  

From t h i s  equation it i s  apparent t h a t  the two conditions f o r  

which the system f a i l s  t o  be completely control lable  with respect 

t o  the  wind a re  fl = 0 o r  

It can be readi ly  ver i f ied  that equation (24) i s  the  same as 

equation (17) wi th  bo = 0. 

the  drift-minimum condition. 

those made i n  the first case could be made. 

Thus i n  t h i s  case equation (24) i s  

A t  t h i s  point  statements similar t o  

CONCLUSIONS 

L 

For the type o f  system considered an e x p l i c i t  condition f o r  

s e l ec t ive  invariant  cont ro l le rs  i s  obtained using the concept of 

complete con t ro l l ab i l i t y .  The Drift-Minimum con t ro l l e r  i s  

obtained as a se l ec t ive  invariant  con t ro l l e r  i n  the example considered. 



-11- 

REFEFENCES 
1. Hoelker, R. F., "Theory of Artificial Stabilization of 

r4lseiles and Space Vehicles with ExposTtion of Four Control 
Principles", NASA TN D-555, 1961. 

Kalman, R. E., 
Proceedings of the F i r s t  International Congress of the 
I F A C ,  MOECOW, 1960. 

2 .  11 On the General Theory of Control Systems", 

3 .  Kulebakin, V. S., 
and Control Systems", Froceedlngs of the First International 
Congress of the IFAC, MOISC~W, 1960. 

11 The Theory of Invariance of Regulating 


